Machine Learning: training a model by creating a labelled dataset

In this post I will go through the steps we took to create a human labelled dataset (i.e. naming objects within images), applying the labels to bounding boxes (showing where the objects are in the image) in order to identify objects and train an ML model. Note that the other approach, and one we will talk about in another post, is to simply let a pre-trained tool do the work of labelling without any human intervention. But we thought that it would be worthwhile to try the human labelling out before seeing what the out-of-the-box results are.

I used the photographs in the Claude William Jamson archive, kindly provided by Hull University Archives. This is a collection with a variety of content that lends itself to this kind of experiment.

An image from the Jamson archive

I used Amazon SageMaker for this work. In SageMaker you can set up a labelling job using the Ground Truth service, by giving the location of the source material – in this case, the folder containing the Jamson photographs. Images have to be jpg, or png, so if you have tif images, for example, they have to be converted. You give the job a name and provide the location of the source material (in our case an S3 bucket, which is the Amazon Simple Storage Service).

Location and output information are added – I have specified that we are working with images.

I then decide on my approach. I trained the algorithm with a random sample of images from this collection. This is because I wanted this sample to be a subset of the full Jamson Archive dataset of images we are working with. We can then use the ML model created from the subset to make object detection predictions for the rest of the dataset.

Random sample is selected, and I can also specify the size of the sample, e.g. 25%.

Once I had these settings completed, I started to create the labels for the ‘Ground Truth’ job. You have to provide the list of labels first of all from which you will select individual labels for each image. You cannot create the labels as you go. This immediately seemed like a big constraint to me.

Interface for adding labels, and a description of the task

I went through the photographs and decided upon the labels – you can only add up to 50 labels. It is probably worth noting here that ‘label bias’ is a known issue within machine learning. This is where the set of labelled data is not fully representative of the entirety of potential labels, and so it can create bias. This might be something we come back to, in order to think about the implications.

Creating a list of labels that I can then apply to each individual image

I chose to add some fairly obvious labels, such as boat or church. But I also wanted to try adding labels for features that are often not described in the metadata for an image, but nonetheless might be of interest to researchers, so I added things like terraced house, telegraph pole, hat and tree, for example.

Once you have the labels, there are some other options. You can assign to a labelling team, and make the task time bound, which might be useful for thinking about the resources involved in doing a job like this. You can also ask for automated data labelling, which does add to the cost, so it is worth considering this when deciding on your settings. The automated labelling uses ML to learn from the human labelling. As the task will be assigned to a work team, you need to ensure that you have the people you want in the team already added to Ground Truth.

Confirming the team and the task timeout

Those assigned to the labelling job will receive an email confirming this and giving a link to access to the labelling job.

Workers assigned to the job can now start to work to create the bounding boxes and add the labels

You can now begin the job of identifying objects and applying labels.

The interface for adding labels to images

First up I have a photograph showing rowing boats. I didn’t add the label ‘rowing boat’ as I didn’t go through every single photograph to find all the objects that I might want to label, so not a good start! ‘Boat’ will have to do. As stated above, I had to work with the labels that I created, I can’t add more labels at this stage.

I added as many labels as I could to each photograph, which was a fairly time intensive exercise. For example, in the image below I added not only boat and person but also hat and chimney. I also added water, which could be optimistic, as it is not really an object that is bound within a box, and it is rather difficult to identify in many cases, but it’s worth a try.

Adding labels using bounding boxes

I can zoom in and out and play with exposure and contrast settings to help me identify objects.

Bounding boxes with labels

Here is another example where I experimented with some labels that seem quite ambitious – I tried shopfront and pavement, for example, though it is hard to classify a shop from another house front, and it is hard to pin-point a pavement.

The more I went through the images, drawing bounding boxes and adding labels, the more I could see the challenges and wondered how the out-of-the-box ML tools would fare identifying these things. My aim in doing the labelling work was partly to get my head into that space of identification, and what the characteristics are of various objects (especially objects in the historic images that are common in archive collections). But my aim was also to train the model to improve accuracy. For an object like a chimney, this labelling exercise looked like it might be fruitful. A chimney has certain characteristics and giving the algorithm lots of examples seems like it will improve the model and thus identify more chimneys. But giving the algorithm examples of shop fronts is harder to predict. If you try to identify the characteristics, it is often a bay window and you can see items displayed in it. It will usually have a sign above, though that is indistinct in many of these pictures. It seems very different training the model on clear, full view images of shops, as opposed to the reality of many photographs, where they are just part of the whole scene, and you get a partial view.

There were certainly some features I really wanted to label as I went along. Not being able to do this seemed to be a major shortcoming of the tool. For example, I thought flags might be good – something that has quite defined characteristics – and I might have added some more architectural features such as dome and statue, and even just building (I had house, terraced house, shop and pub). Having said that, I assume that identifying common features like buildings and people will work well out-of-the-box.

Running a labelling job is a very interesting form of classification. You have to decide how thorough you are going to be. It is more labour intensive than simply providing a description like ‘view of a street’ or ‘war memorial’. I found it elucidating as I felt that I was looking at images in a different way and thinking about how amazing the brain is to be able to pick out a rather blurred cart or a van or a bicycle with a trailer, or whatever it might be, and how we have all these classifications in our head. It took more time than it might have done because I was thinking about this project, and about writing blog posts! But, if you invest time in training a model well, then it may be able to add labels to unlabelled photographs, and thus save time down the line. So, investing time at this point could reap real rewards.

Part of a photograph with labels added

In the above example, I’ve outlined an object that i’ve identified as a telegraph pole. One question I had is whether I am are right in all of my identifications, and I’m sure there will be times when things will be wrongly identified. But this is certainly the type of feature that isn’t normally described within an image, and there must be enthusiasts for telegraph poles out there! (Well, maybe more likely historians looking at communications or the history of the telephone). It also helps to provide examples from different periods of history, so that the algorithm learns more about the object. I’ve added a label for a cart and a van in this photo. These are not all that clear within the image, but maybe by labelling less distinct features, I will help with future automated identification in archival images.

I’ve added hat as a label, but it strikes me that my boxes also highlight heads or faces in many cases, as the people in these photos are small, and it is hard to distinguish hat from head. I also suspect that the algorithm might be quite good with hats, though I don’t yet know for sure.

person and child labels

I used ‘person’ as a label, and also ‘child’, and I tended not to use ‘person’ for ‘child’, which is obviously incorrect, but I thought that it made more sense to train the algorithm to identify children, as person is probably going to work quite well. But again, I imagine that person identification is going to be quite successful without my extra work – though identifying a child is a rather more challenging task. In the end, it may be that there is no real point in doing any work identifying people as that work has probably been done with millions of images, so adding my hundred odd is hardly going to matter!

I had church as a label, and then used it for anything that looked like a church, so that included Beverly Minster, for example. I couldn’t guarantee that every building I labelled as a church is a church, and I didn’t have more nuanced labels. I didn’t have church interior as a label, so I did wonder whether labelling the interior with the same label as the exterior would not be ideal.

I was interested in whether pubs and inns can be identified. Like shops, they are easy for us to identify, but it is not easy to define them for a machine.

Green Dragon at Welton

A pub is usually a larger building (but not always) with a sign on the facade (but not always) and maybe a hanging sign. But that could be said for a shop as well. It is the details such as the shape of the sign that help a human eye distinguish it. Even a lantern hanging over the door, or several people hanging around outside! In many of the photos the pub is indistinct, and I wondered whether it is better to identify it as a pub, or whether that could be misleading.

I found that things like street lamps and telegraph poles seemed to work well, as they have clear characteristics. I wanted to try to identify more indistinct things like street and pavement, and I added these labels in order to see if they yield any useful results.

I chose to label 10% of the images. That was 109 in total, and it took a few hours. I think if I did it again I would aim to label about 50 for an experiment like this. But then the more labels you provide, the more likely you will get results.

The next step will be to compare the output using the Rekognition out of the box service with one trained using these labels. I’m very interested to see how the two compare! We are very aware that we are using a very small labelled dataset for training, but we are using the transfer learning approach that builds upon existing models, so we are hopeful we may see some improvement in label predications. We are also working on adding these labels to our front end interface and thinking about how they might enhance discoverability.

Thanks to Adrian Stevenson, one of the Hub Labs team, who took me through the technical processes outlined in this post.

Using AI to Write Blog Posts

Given that Hub Labs is looking at AI and we’re also writing blog posts, it seemed like a good opportunity to try out one of the AI blog post writing applications that keep appearing in my various streams. The one that seems to get the best recommendations and is also free to trial is Writesonic. I’ve been meaning to write a post about our initial steps to build the AWS cloud infrastructure for Labs, so I thought I would use this as the basis for the experiment. You essentially provide a title, in this case I chose ‘Getting Started with Machine Learning in the Cloud’, and it will then provide some intros and outlines that you can accept or reject before it goes on to produce some copy. The best copy I could get it to produce given the options provided is pasted in below. You can see it’s a bit marketing speak and it was no great surprise that it’s not proved to be of much use for my experiment at least. For some reason it wanted to assume we are using Google Cloud and didn’t offer any AWS copy. It was interesting to try it though, and I could see it might be useful for more general posts.

The AI generated copy (italised by me) including the image is pasted below:

Getting Started with Machine Learning in the Cloud

Image Source: Freepik‍

The practice of machine learning involves training computer algorithms to recognize patterns in data and make predictions based on those patterns. It takes a lot of resources to implement machine learning in your business. There are many different datasets, tools, and software packages that you need to understand and choose from before you canput them to work analyzing your data and building your algorithm. This blog post discusses how you can use cloud services for machine learning with an example using Google Cloud Machine Learning (Cloud ML) and its APIs for Natural Language Processing (NLP).

What is Machine Learning?

There are many definitions of machine learning, including the IEEE’s “A computer program is said to learn from experience E with respect to some class of tasks T and some performance measure P if its performance at tasks in T, as measured by P, improves with experience E.” Or, as silly as it sounds, you can think about machine learning as a computer program that takes a bunch of data and spits out a prediction. You’re the one that has to tell the program how to do it.

Cloud ML with its APIs for NLP

Google Cloud Machine Learning workflows let you build and manage machine learning models in Google Cloud. Cloud ML supports a variety of machine learning frameworks, including TensorFlow, Caffe 2, and Apache MXNet. Cloud ML also provides a set of Natural Language APIs to support natural language processing (NLP) tasks, including sentiment analysis and entity extraction. Cloud ML’s NLP APIs can be accessed programmatically through its REST APIs.

Create a dataset using BigQuery

When you’re collecting data for machine learning, it’s important that your data be as accurate as possible. Google’s BigQuery lets you create a dataset in the cloud, and then you can use Google’s Natural Language API to analyze that dataset and get a breakdown of the different parts of speech. BigQuery is Google’s fully managed, enterprise data warehouse for business analytics. With BigQuery, you can query large data sets using standard SQL and get results in seconds. It’s also fully integrated with Google’s other analytical and collaboration tools, such as Google Sheets, Google Data Studio, and Google Cloud Platform.

Create a model using TensorFlow

With your dataset collected and a model for the Natural Language API built, you can create the model with TensorFlow. In this example, you’ll be building a model for sentiment analysis, which means you’ll be using the API’s sentiment analysis functionality. If you’re new to TensorFlow, don’t worry. There are some libraries out there that make it super easy to get started. One of them is tf-python-client, which is a library that allows you to write python code that uses TensorFlow.

Run the model in a Cloud Dataflow job

At this point, you’ve built a model and have everything ready to go. All that’s left to do is plug everything into Cloud Dataflow. Cloud Dataflow is Google’s fully managed, distributed framework for executing streaming data pipelines. Cloud Dataflow lets you build scalable, easy-to-manage data processing pipelines that transform and enrich your data. With Dataflow, you can build data processing and machine learning pipelines in a single, unified programming model. This means that you can build a model that performs data analysis, trains the model, and then deploys it in one workflow instead of three different ones.

Run the model in an API server

Your model is ready to go. Now you’re just missing the code to plug into an API server that can handle your data and send it to BigQuery. The Google Cloud Natural Language API lets you understand the meaning of text. You can use the API to detect entities, sentiments, and other linguistic properties of text. The API supports 82 languages.

Conclusion

Now that you know what machine learning is and have gotten started with Cloud ML and its NLP APIs, you can put this knowledge to use. You can use the NLP APIs to perform sentiment analysis or entity extraction on a dataset. This can be helpful for creating articles, social media posts, or marketing materials that are more effective.

With Cloud ML and its NLP APIs, you can create machine learning models that are more accurate and make more informed predictions. It takes a lot more effort to create models without cloud services, and it’s often difficult to keep track of all of the resources needed. With cloud services, you can focus on the model and not worry about the infrastructure and resources needed to run it.

Employing Machine Learning and Artificial Intelligence in Cultural Institutions

As mentioned in my last post, we’re looking at the possibilities Artificial Intelligence and Machine Learning can offer the Archives Hub and the archives community in general. I also now have a wider role in Jisc as a ‘Technical Innovations Manager’, so my brief is to consider the wider technical and strategic possibilities of AI/ML for the Digital Resources directorate and Jisc as a whole. We continue to work behind the scenes, but we also keep a watch on cultural heritage and wider sector activities. As part of this I participated in the Aeolian Project’s ‘Online Workshop 1: Employing Machine Learning and Artificial Intelligence in Cultural Institutions’ yesterday.

‘Visual AI and Printed Chapbook Illustrations at the National Library of Scotland’ – Dr Giles Bergel (University of Oxford / National Library of Scotland)

Giles’ team have been using machine learning (ML) on data from data.nls.uk. He outlined their three part approach. First they find illustrations in manuscripts using Google’s EfficientDet object detection convolutional neural network seeded by manually pre-annotated images. They found the object detector worked extremely well after relatively few learning passes. There were a few false positives such as image ink showing through, marginalia and dog ears that would confuse the model.

Image showing false postive ml recognition
False positive ML recognition – ink showthrough

Next they matched and grouped the illustrations using their “state of art” image search engine. Giles believes this shows that AI simplifies the task of finding things that are related in images. The final step was to apply classification alogorithms with the VGG Image Classification Engine which uses Google as a source of labelled images. The lessons learned were:

  • AI requires well-curated data
  • Tools for annotating data are no less important than classifiers
  • Generic image models generalize well to printed books
  • ‘Classical’ computer vision still works
  • AI software development benefits from end-to-end use-cases including data preparation, refinement, consulting with domain experts, public engagement etc.

Machine Learning and Cultural Heritage: What Is It Good Enough For?’ – John Stack (UK Science Museum)

John described how AI is being used as part of the Science Museum’s linked data work to collect data into a central knowledge graph. He noted that the Science Museum are doing a great deal of digitisation but currently they only have what John describes as ‘thin’ object data.

They are looking at using AI for name disambiguation as a first step before adding links to wikidata and using entity recognition to enhance their own catalogue. It stuck me that they, and we at the Hub, have been ‘doing AI’ for a while now with such technologies as entity recognition and OCR before the term AI was used. They are aiming to link through to wikidata such that they can pull in the data and add it to their knowledge graph. This allows them to enhance their local data and apply ML to perform such things as clustering to draw out new insights.

John identified the main benefits of ML currently as suggesting possibilities and identifying trends and gaps. It’s also useful for visualisation and identifying related content as well as enhancing catalogues with new terminology. However there were ‘but’s. ML content needs framing and context. He noted that false positives are not always apparent and usually require specialist knowledge. It’s important to approach things critically and understand what can’t be done. John mentioned that they don’t have any ML driven features in production as yet.

Diagram showing the components of the Heritage Connector software

This was followed by a Q&A where several issues came up. We need to consider how AI may drive new ways/modalities of browsing that we haven’t imagined yet. A major issue is the work needed to feed AI enhancements into user interfaces. Most work so far has been on backend data. AI tools need to integrate into day-to-day workflows for their benefits to be realised. More sector specific case-studies, training materials, tools and models are needed that are appropriate to cultural heritage. See the Heritage Connector blog for more information.

AI and the Photoarchive‘ – John McQuaid (Frick Collection), Dr Vardan Papyan (University of Toronto), and X.Y. Han (Cornell University)

The Frick Collection have been using the PyTorch deep neural network to identify labels for their photo archive collection. They then compared the ML results as a validation exercise with internally crowdsourced data from their staff and curators captured by the Zooinverse software for the same photos.

Frick Collection workflow
Frick Collection ML workflow

They found that 67% of the ML labels matched with the crowdsource validations which they considered a good result. They concluded that at present ML is most useful for ‘curatorial amplification’, but much human effort is still needed. This auto-generation of metadata was their main use case so far.

Keep True: Three Strategies to Guide AI Engagement‘ – Thomas Padilla (Center for Research Libraries)

Thomas believes GLAMs have an opportunity to distinguish themselves in the AI space. He covered a number of themes, the first being the ’Non-scalability imperative’. Scale is everywhere with AI.  There’s a great deal of marketing language about scale, but we need to look at all the non-scalable processes that scale depends on. There’s a problematic dependency where scalability is made possible by non-scalable processes, resources and people. Heterogeneity and diversity can become a problem to be solved by ML. There’s little consideration that AI should be just and fair. 

The second theme was ‘Neoliberal traps’ in AI. Who says ethical AI is ethical AI? GLAMs are trying to do the right thing with AI, but this is in the context of neoliberal moral regulation which is unfair and ineffective. He mentioned some of the good examples from the sector including from CILIP, Museums AI Network and his own ‘Responsible Operations‘ paper.

He credited Melissa Terras for asking the question “How are you going to advocate for this with legislation?”. The US doesn’t have any regulations at the moment to get the private sector to get better. I mentioned the UK AI Council who are looking at this in the UK context, and the recent CogX event where the need for AI regulation was discussed in many of the sessions.

The final theme was ‘Maintenance as Innovation’. Information maintenance is a Practice of Care. There is an asserted dichotomy between maintenance and innovation that’s false. Maintenance is sustained innovation and we must value the importance of maintenance to innovation. He appealed to the origin of the word ‘innovation’ which derives from the latin ‘innovare’ which means “to alter, renew, restore, return to a thing, introduce changes in the way something is done or made”. It’s not about creating from new. At the Hub we wholeheartedly endorse this view. We feel there’s far too much focus on the latest technology meme and we’ve had tensions within our own organisation along these lines. There may appear to be some irony here given the topic of this post, but we have been doing AI for a while as noted above. He referred us to https://themaintainers.org/ for more on this.

Roundtable discussion with the AEOLIAN Project Team

Dr Lise Jaillant, Dr Annalina Caputo, Glen Worthey (University of Illinois), Prof. Claire Warwick (Durham University), Prof. J. Stephen Downie (University of Illinois), Dr Paul Gooding (Glasgow University), and Ryan Dubnicek (University of Illinois).

Stephen Downie talked about the need for standardisation of ML extracted features so we can re-use these across GLAMs in a consistent way. The ‘Datasheets for Datasets’ paper was mentioned that proposes “a short document to accompany public datasets, commercial APIs, and pretrained models”. This reminded me of Yves Bernaert’s talk about the related need for standardisation of carbon consumption measures. Both are critical issues and possible areas for Jisc to be involved in providing leadership. Another point that Stephen made is that researchers are finding they can’t afford the bill for ML processing. Finding hardware and resources is a big problem. As noted by ML guru Andrew Ng, we have a considerable data issue with AI and ML work . It may be that we need to work more on the data rather than wasting time, electricity and money re-creating expensive ML models. A related piece of work, ‘Lessons from Archives‘ was also mentioned in this regard. There is a case for sharing model developments across the sector for efficiency and sustainability here.

Artificial Intelligence – Getting the Next Ten Years Right

CogX poster with dates of the event

I attended the ‘CogX Global Leadership Summit and Festival of AI’ last week, my first ‘in-person’ event in quite a while. The CogX Festival “gathers the brightest minds in business, government and technology to celebrate innovation, discuss global topics and share the latest trends shaping the defining decade ahead”. Although the event wasn’t orientated towards archives or cultural heritage specifically, we are doing work behind the scenes on AI and machine learning with the Archives Hub that we’ll say more about in due course. Most of what’s described below is relevant to all sectors as AI is a very generalised technology in its application.

image of presenter

My attention was drawn to the event by my niece Laura Stevenson who works at Faculty and was presenting on ‘How the NHS is using AI to predict demand for services‘. Laura has led on Faculty’s AI driven ‘Early Warning System’ that forecasts covid patient admissions and bed usage for the NHS. The system can use data from one trust to help forecast care for a trust in another area, and can help with best and worst scenario planning with 95% confidence. It also incorporates expert knowledge into the modelling to forecast upticks more accurately than doubling rates can. Laura noted that embedding such a system into operational workflows is a considerable extra challenge to developing the technology.

Screenshot of Explainability Data
Example of AI explainability data from the Early Warning System (image ©Faculty.ai )

The system includes an explainability feature showing various inputs and the degree to which they affect forecasting. To help users trust the tool, the interface has a model performance tab so users can see information on how accurate the tool has been with previous forecasts. The tool is continuing to help NHS operational managers make planning decisions with confidence and is expected to have lasting impact on NHS decision making.

image of presenter

Responsible leadership: The risks and the rewards of advancing the state of the art in AI’ – Lila Ibrahim

Lila works at Deep Mind who are looking to use AI to unlock whole new areas of science. Lila highlighted the role of the AI Council who are providing guidance to UK Government in regard to UK AI research. She talked about Alphafold that has been addressing the 50 year old challenge of protein folding. This is a critical issue as being able to predict protein folding unlocks many possibilities including disease control and using enzymes to break down industrial waste. DeepMind have already created an AI system that can help predict how a protein folding occurs and have a peer reviewed article coming out soon. They are trying to get closer to the great challenge of general intelligence.

image of presenter

Sustainable Technologies, Green IT & Cloud‘ – Yves Bernaert, Senior Managing Director, Accenture

Yves focussed on company and corporate responsibility, starting his session with some striking statistics:

  • 100 companies produce 70% of global carbon emissions.
  • 40% of water consumption is by companies.
  • 40% of deforestation is by companies.
  • There is 80 times more industrial waste than consumer waste.
  • 20% of the acidification of the ocean is produced by 20 companies only.

Yves therefore believes that companies have a great responsibility, and technology can help to reduce climate impact. 2% of global electricity comes from data centres currently and is growing exponentially, soon to be 8%. A single email produces on average 4g of carbon. Yves stressed that all companies have to accept that now is the time to come up with solutions and companies must urgently get on with solving this problem. IT energy consumption needs to be seen as something to be fixed. If we use IT more efficiently, emissions can be reduced by 20-30%. The solution starts with measurement which must be built into the IT design process.

We can also design software to be far more efficient. Yves gave the example of AI model accuracy.  More accuracy requires more energy. If 96% accuracy is to be improved by just 2%, the cost will be 7 times more energy usage. To train a single neural network requires the equivalent of the full lifecycle energy consumption of five cars. These are massive considerations. Interpreted program code has much higher energy use than compiled code such as C++.

A positive note is that 80% of the global IT workload is expected to move to the cloud in the next 3 years. This will reduce carbon emissions by 84%. Savings can be made with cloud efficiency measures such as scaling systems down and outwards so as not to unneccessarily provision for occasional workload spikes. Cloud migration can save 60 million tons carbon per year which is the equivalent of 20 million full lifecycle car emissions. We have to make this happen!

On where are the big wins, Yves said this is also in the IT area. Companies need to embed sustainability into their goals and strategy. We should go straight for the biggest spend. Make measurements and make changes that will have the most effect. Allow departments and people to know their carbon footprint.

* Update 28th June 2021 * – It was remiss of me not to mention that I’m working on a number of initiatives relating to green sustainable computing at Jisc. We’re looking at assessing the carbon footprint of the Archives Hub using the Cloud Carbon Footprint tool to help us make optimisations. I’m also leading on efforts within my directorate, Digital Resources, to optimise our overall cloud infrastructure using some of the measures mentioned above in conjuction with the Jisc Cloud Solutions team and our General Infrastructure team. Our Cloud CTO Andy Powell says more on this in his ‘AI, cloud and the environment‘ blog post.

image of presenter

Future of Research’ – Prof. Dame Ottoline Leyser, CEO, UK Research and Innovation (UKRI)

Ottoline believes that pushing the boundaries of how we support research needs to happen. Research is now more holistic. We draw in what we need to create value. The lone genius is a big problem for research culture and it has to go. Research is insecure and needs connectivity.

Ottoline believes AI will change everything about how research is done. It’s initially replacing mundane tasks but will some more complex tasks such as spotting correlations. Eventually AI will be used as a tool to help understanding in a fundamental way. In terms of the existential risk of AI, we need to embed research as collective endeavour and share effort to mitigate and distribute this risk. It requires culture change, joining up education and entrepreneurship.

We need to fund research in places that are not the usual places. Ottoline likes a football analogy where people are excited and engaged at all levels of the endeavour, whether in the local park or at the stadium. She suggests research at the moment is more like elitist Polo not football.

Ottoline mentioned that UKRI funding does allow for white spaces research. Anyone can apply. However, we need to create wider white spaces to allow research in areas not covered by the usual research categories. It will involve braided and micro careers, not just research careers. Funding is needed to support radical transitions. Ottonline agrees that the slow pace of publication and peer review is a big problem that undermines research. We need to broaden ways we evaluate research. Peer Review is helpful but mustn’t slow things down.

image of presenter

Ethics and Bias in AI‘ – Rob Glaser, CEO & Founder of RealNetworks

Rob suggests we are in an era with AI where there are no clear rules of the road yet. The task for AI is to make it safe to ‘drive’ with regulations. We can’t stop facial recognition any more than we can stop gravity. We need datasets for governance so we can check accuracy against these for validation. Transparency is also required so we can validate algorithms.  A big AI concern is the tribalism on social media.

image of presenter

‘AI and Healthcare‘ – Rt. Hon. Matt Hancock

Matt Hancock believes we are at a key moment with healthcare and AI technology where it’s now of vital importance. Data saves lives! The next thing is how to take things forward in NHS. A clinical trials interoperability programme is starting that will agreed standards to get more out of data use, and the Government will be updating it’s Data strategy soon. He suggests we need to remove silos and commercial incentives (sic). On the use of GP data he suggests we all agree on the use of data, but the question is how it’s used. The NHS technical architecture needs to improve for better use and building data into the way the NHS works. GPs don’t own patient data, it is the citizen.

He said a data lake is being built across the NHS. Citizen interaction with health data is now greater than ever before and NHS data presents a great opportunity for research, and an enormous opportunity for the use of data to advance health care. He suggested we need to radically simplify the NHS information governance rules. On areas where not enough progress has been made, he mentioned the lack of separation of data layers is currently a problem. So many applications silo their data. There has also been a culture of Individual data with personal curation. The UK is going for a TRE first approach: ‘Trusted Research Environment service for England‘. Data is the preserve of the patient who will allow accredited researchers to use the data through the TRE. The clear preference of citizens is sharing data if they trust the sharing mechanism. Every person goes through a consent process for all data sharing. Acceptance requires motivating people with the lifesaving element of research. If there’s trust, the public will be on side. Researchers in this domain with have to abide by new rules to allow us to build on this data. He mentioned that Ben Goldacre will look at the line where open commons ends and NHS data ownership begins in the forthcoming Goldacre Review.